Evolutionary topology optimization of continuum structures with a global displacement control
نویسندگان
چکیده
The conventional compliance minimization of load-carrying structures does not directly deal with displacements that are of practical importance. In this paper, a global displacement control is realized through topology optimization with a global constraint that sets a displacement limit on the whole structure or certain sub-domains. A volumeminimization problem is solved by an extended evolutionary topology optimization approach. The local displacement sensitivities are derived following a powerlaw penalization material model. The global control of displacement is realized through multiple local displacement constraints on dynamically located critical nodes. Algorithms are proposed to secure the stability and convergence of the optimization process. Through numerical examples and by comparing with conventional stiffness designs, it is demonstrated that the proposed approach is capable of effectively finding optimal solutions which satisfy the global displacement control. Such solutions are of particular importance for structural designs whose deformed shapes must comply with functioning requirements such as aerodynamic performances. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Isogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm
Topology optimization has been an interesting area of research in recent years. The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures. A two-dimensional plate is analyzed statically and the nodal displacements are calculated. The nodal displacements using Isogeometric analysis are found to be ...
متن کاملOn the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کاملVOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کامل6th World Congresses of Structural and Multidisciplinary Optimization
In the optimization process of a complex three-dimensional continuum structure by using the conventional evolutionary structural optimization method, some isolated groups of elements or a few elements being of rigid movements, often appear in the optimized structure, which becomes singular so that the optimization process can’t continue. In order to overcome this problem, this paper proposes an...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 56 شماره
صفحات -
تاریخ انتشار 2014